% generated by bibtexbrowser
%
% Encoding: UTF-8
@inproceedings{Schmidt-Cremers-dagm09,
author = {F. R. Schmidt and D. Cremers},
title = {A Closed-Form Solution for Image Sequence Segmentation with Dynamical Shape Priors},
booktitle = {Pattern Recognition (Proc. DAGM)},
year = {2009},
address = {Jena, Germany},
month = {September},
titleurl = {sc09.pdf},
topic = {Shape Priors},
keywords = {shape-priors},
}
@inproceedings{Cremers-et-al-cvpr08,
author = {D. Cremers and F. R. Schmidt and F. Barthel},
title = {Shape Priors in Variational Image Segmentation: Convexity, Lipschitz Continuity and Globally Optimal Solutions},
booktitle = {IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
year = {2008},
address = {Anchorage, Alaska},
month = {jun},
keywords = {shape-priors, convex-relaxation},
titleurl = {cremers_et_al_cvpr08.pdf},
topic = {Shape Priors, Convex Relaxation Methods},
}
@inproceedings{Schoenemann-Cremers-07a,
author = {T. Schoenemann and D. Cremers},
title = {Globally Optimal Image Segmentation with an Elastic Shape Prior},
booktitle = {IEEE International Conference on Computer Vision (ICCV)},
year = {2007},
address = {Rio de Janeiro, Brazil},
month = {oct},
keywords = {shape-priors},
titleurl = {shape_iccv07.pdf},
topic = {Shape, Segmentation, Graph, Shape Priors},
}
@inproceedings{Cremers07,
author = {D. Cremers},
title = {Nonlinear Dynamical Shape Priors for Level Set Segmentation},
booktitle = {IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
year = {2007},
titleurl = {cremers_cvpr07.pdf},
keywords = {shape-priors},
topic = {Level Sets, Tracking, Shape Priors, Segmentation},
}
@article{Cremers-jsc08,
author = {D. Cremers},
title = {Nonlinear Dynamical Shape Priors for Level Set Segmentation},
journal = {Journal of Scientific Computing},
volume = {35},
number = {2-3},
pages = {132--143},
year = {2008},
month = {jun},
titleurl = {cremers_jsc08.pdf},
keywords = {shape-priors},
topic = {Level Sets, Tracking, Shape Priors, Segmentation},
}
@inproceedings{BBPW04,
author = {T. Brox and A. Bruhn and N. Papenberg and J. Weickert},
title = {High accuracy optical flow estimation based on a theory for warping},
booktitle = {European Conference on Computer Vision (ECCV)},
year = {2004},
editor = {T. Pajdla and J. Matas},
volume = {3024},
series = {LNCS},
pages = {25--36},
address = {Prague, Czech Republic},
month = {may},
publisher = {Springer},
award = {{Received "The Longuet-Higgins
Best Paper Award"}},
copyright = {{Springer-Verlag
Berlin Heidelberg 2004}},
titleurl = {brox_eccv04_of.pdf},
keywords = {shape-priors, optical-flow},
topic = {Optic Flow, Motion},
}
@article{Cremers-06,
author = {D. Cremers},
title = {Dynamical statistical shape priors for level set based tracking},
journal = {IEEE Transactions on Pattern Analysis and Machine Intelligence},
year = {2006},
volume = {28},
number = {8},
pages = {1262--1273},
month = {aug},
keywords = {shape-priors},
titleurl = {cremers_pami06.pdf},
topic = {Level Sets, Shape Priors, Segmentation, Tracking},
}
@article{Brox-et-al-pami09,
author = {T. Brox and B. Rosenhahn and J. Gall and D. Cremers},
title = {Combined region- and motion-based 3D tracking of rigid and
articulated objects},
journal = {IEEE Transactions on Pattern Analysis and Machine Intelligence},
year = {2009},
volume = {32},
number = {3},
pages = {402-415},
keywords = {tracking,shape-priors},
titleurl = {brox_et_al_pami09.pdf},
topic = {Level Sets, Shape Priors, 3DTracking},
}
@article{Cremers-et-al-ijcv07,
author = {D. Cremers and M. Rousson and R. Deriche},
title = {A review of statistical approaches to level set
segmentation: integrating color, texture, motion and
shape},
journal = {International Journal of Computer Vision},
year = {2007},
volume = {72},
number = {2},
pages = {195--215},
month = {apr},
titleurl = {cremers_rousson_deriche_ijcv07.pdf},
keywords = {shape-priors, medical imaging},
topic = {Segmentation, Statistics, Shape Priors, Level Sets, Motion},
}
@inproceedings{Cremers-et-al-02,
author = {D. Cremers and T. Kohlberger and C. Schnörr},
title = {Nonlinear shape statistics in {M}umford--{S}hah based segmentation},
booktitle = {European Conference on Computer Vision (ECCV)},
year = {2002},
editor = {A. Heyden and others},
volume = {2351},
series = {LNCS},
pages = {93--108},
address = {Copenhagen},
month = {May},
publisher = {Springer},
titleurl = {cremers_eccv02.pdf},
keywords = {shape-priors},
topic = {Segmentation, Statistics, Shape Priors, Machine Learning},
}
@article{Cremers-et-al-03hd,
author = {D. Cremers and T. Kohlberger and C. Schnörr},
title = {Shape {S}tatistics in {K}ernel {S}pace for {V}ariational {I}mage
{S}egmentation},
journal = {Pattern {R}ecognition},
year = {2003},
volume = {36},
pages = {1929--1943},
number = {9},
award = {Awarded Best Paper of the Year 2003},
titleurl = {nonlinear_pr03.pdf},
keywords = {shape-priors},
topic = {Shape Priors, Statistics, Machine Learning, Segmentation},
}
@inproceedings{Cremers-et-al-04b,
author = {D. Cremers and S. J. Osher and S. Soatto},
title = {Kernel density estimation and intrinsic alignment for knowledge-driven
segmentation: {T}eaching level sets to walk},
booktitle = {Pattern Recognition (Proc. DAGM)},
year = {2004},
editor = {C. E. Rasmussen},
volume = {3175},
series = {LNCS},
pages = {36--44},
publisher = {Springer},
titleurl = {cremers_dagm04.pdf},
keywords = {shape-priors},
topic = {Level Sets, Shape Priors, Statistics, Segmentation},
}
@incollection{Cremers-Rousson-07,
author = {D. Cremers and M. Rousson},
title = {Efficient kernel density estimation of shape and intensity priors
for level set segmentation},
booktitle = {Parametric and {G}eometric {D}eformable {M}odels: {A}n application
in {B}iomaterials and {M}edical {I}magery},
publisher = {Springer},
year = {2007},
editor = {J. S. Suri and A. Farag},
month = {May},
titleurl = {cremers_rousson07.pdf},
topic = {Segmentation, Shape Priors, Medical Image Analysis, Statistics},
keywords = {shape-priors, medical imaging},
}
@inproceedings{Cremers-et-al-dyn,
author = {D. Cremers and C. Schnörr and J. Weickert and C. Schellewald},
title = {Learning of translation invariant shape knowledge for steering diffusion
snakes},
booktitle = {Dynamische {P}erzeption},
year = {2000},
editor = {G. Baratoff and H. Neumann},
volume = {9},
series = {Proceedings on Artificial Intelligence},
pages = {117--122},
address = {Ulm Germany},
month = {Nov.},
publisher = {Infix},
titleurl = {dynperz00.ps.gz},
keywords = {shape-priors},
topic = {Shape Priors, Statistics, Segmentation},
}
@inproceedings{Cremers-et-al-00,
author = {D. Cremers and C. Schnörr and J. Weickert and C. Schellewald},
title = {Diffusion {S}nakes using statistical shape knowledge},
booktitle = {Algebraic {F}rames for the {P}erception-{A}ction {C}ycle},
year = {2000},
editor = {G. Sommer and Y.Y. Zeevi},
volume = {1888},
series = {LNCS},
pages = {164--174},
address = {Kiel, Germany},
month = {Sept.},
publisher = {Springer},
titleurl = {afpac2000.ps.gz},
keywords = {shape-priors},
topic = {Shape Priors, Statistics, Segmentation},
}
@inproceedings{Cremers-Soatto-03b,
author = {D. Cremers and S. Soatto},
title = {A pseudo-distance for shape priors in level set segmentation},
booktitle = {I{EEE} 2nd {I}nt. {W}orkshop on {V}ariational, {G}eometric and {L}evel
{S}et {M}ethods},
year = {2003},
editor = {N. Paragios},
pages = {169--176},
address = {Nice},
titleurl = {cremers_soatto_vlsm03.pdf},
keywords = {shape-priors},
topic = {Shape Priors},
}
@inproceedings{Cremers-et-al-03,
author = {D. Cremers and N. Sochen and C. Schnörr},
title = {Towards {R}ecognition-based {V}ariational {S}egmentation {U}sing
{S}hape {P}riors and {D}ynamic {L}abeling},
booktitle = {Scale-{S}pace {M}ethods in {C}omputer {V}ision},
year = {2003},
editor = {L. D. Griffin and M. Lillholm},
volume = {2695},
series = {LNCS},
pages = {388--400},
address = {Isle of Skye},
publisher = {Springer},
titleurl = {dynamic_labeling.pdf},
keywords = {shape-priors},
topic = {Shape Priors, Level Sets, Segmentation, Recognition},
}
@inproceedings{Cremers-et-al-04,
author = {D. Cremers and N. Sochen and C. Schnörr},
title = {Multiphase dynamic labeling for variational recognition-driven image
segmentation},
booktitle = {European Conference on Computer Vision (ECCV)},
year = {2004},
editor = {T. Pajdla and V. Hlavac},
volume = {3024},
series = {LNCS},
pages = {74--86},
publisher = {Springer},
titleurl = {cremers_eccv04.pdf},
keywords = {shape-priors},
topic = {Shape Priors, Level Sets, Segmentation, Recognition},
}
@article{Cremers-et-al-02c,
author = {D. Cremers and F. Tischhäuser and J. Weickert and C. Schnörr},
title = {Diffusion {S}nakes: {I}ntroducing statistical shape knowledge into
the {M}umford--{S}hah functional},
journal = {International Journal of Computer Vision},
year = {2002},
volume = {50},
pages = {295--313},
number = {3},
titleurl = {cremers_et_al_ijcv02.pdf},
keywords = {shape-priors},
topic = {Shape Priors, Segmentation, Statistics},
}
@inproceedings{stuehmer-et-al-iccv2013,
author = {J. Stühmer and P. Schröder and D. Cremers},
title = {Tree Shape Priors with Connectivity Constraints using Convex Relaxation on General Graphs},
year = {2013},
address = {Sydney, Australia},
month = {December},
titleurl = {stuehmer-et-al-iccv2013.pdf},
booktitle = {IEEE International Conference on Computer Vision (ICCV)},
topic = {Segmentation, Shape Priors},
keywords = {Convex-Relaxation, Segmentation, shape-priors, medical imaging},
award = {Oral Presentation},
}
@inproceedings{Stuehmer-Cremers-emmcvpr15,
author = {J. Stühmer and D. Cremers},
title = {A Fast Projection Method for Connectivity Constraints in Image Segmentation},
booktitle = {Energy Minimization Methods in Computer Vision and Pattern Recognition (EMMCVPR)},
editor = {X.-C. Tai and E. Bae and T. F. Chan and M. Lysaker},
series = {LNCS},
year = {2015},
keywords = {image-segmentation,constrained convex optimization,shape-priors,medical imaging},
topic = {Segmentation, Shape Priors},
}