Direkt zum Inhalt springen
Computer Vision Group
TUM School of Computation, Information and Technology
Technical University of Munich

Technical University of Munich

Menu

Links

Informatik IX
Computer Vision Group

Boltzmannstrasse 3
85748 Garching info@vision.in.tum.de

Follow us on:

News

04.03.2024

We have twelve papers accepted to CVPR 2024. Check our publication page for more details.

18.07.2023

We have four papers accepted to ICCV 2023. Check out our publication page for more details.

02.03.2023

CVPR 2023

We have six papers accepted to CVPR 2023. Check out our publication page for more details.

15.10.2022

NeurIPS 2022

We have two papers accepted to NeurIPS 2022. Check out our publication page for more details.

15.10.2022

WACV 2023

We have two papers accepted at WACV 2023. Check out our publication page for more details.

More


Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
research:monorec [2021/06/15 09:32]
Nan Yang
research:monorec [2021/06/15 09:38] (current)
Nan Yang
Line 2: Line 2:
  
 **Contact:** [[members:yangn|Nan Yang]], [[members:stumberg|Lukas Von Stumberg]], [[members:zellern|Niclas Zeller]] **Contact:** [[members:yangn|Nan Yang]], [[members:stumberg|Lukas Von Stumberg]], [[members:zellern|Niclas Zeller]]
 +
 +<html><center><b><font color="red">
 +[June 14., 2021] Code released! See below.
 +</font></b></center></html>
  
 <html><center><iframe width="640" height="360" <html><center><iframe width="640" height="360"
Line 18: Line 22:
  
 In this paper, we propose MonoRec, a semi-supervised monocular dense reconstruction architecture that predicts depth maps from a single moving camera in dynamic environments. MonoRec is based on a multi-view stereo setting which encodes the information of multiple consecutive images in a cost volume. To deal with dynamic objects in the scene, we introduce a MaskModule that predicts moving object masks by leveraging the photometric inconsistencies encoded in the cost volumes. Unlike other multi-view stereo methods, MonoRec is able to predict accurate depths for both static and moving objects by leveraging the predicted masks. Furthermore, we present a novel multi-stage training scheme with a semi-supervised loss formulation that does not require LiDAR depth values. We carefully evaluate MonoRec on the KITTI dataset and show that it achieves state-of-the-art performance compared to both multi-view and single-view methods. With the model trained on KITTI, we further demonstrate that MonoRec is able to generalize well to both the Oxford RobotCar dataset and the more challenging TUM-Mono dataset recorded by a handheld camera.  In this paper, we propose MonoRec, a semi-supervised monocular dense reconstruction architecture that predicts depth maps from a single moving camera in dynamic environments. MonoRec is based on a multi-view stereo setting which encodes the information of multiple consecutive images in a cost volume. To deal with dynamic objects in the scene, we introduce a MaskModule that predicts moving object masks by leveraging the photometric inconsistencies encoded in the cost volumes. Unlike other multi-view stereo methods, MonoRec is able to predict accurate depths for both static and moving objects by leveraging the predicted masks. Furthermore, we present a novel multi-stage training scheme with a semi-supervised loss formulation that does not require LiDAR depth values. We carefully evaluate MonoRec on the KITTI dataset and show that it achieves state-of-the-art performance compared to both multi-view and single-view methods. With the model trained on KITTI, we further demonstrate that MonoRec is able to generalize well to both the Oxford RobotCar dataset and the more challenging TUM-Mono dataset recorded by a handheld camera. 
 +
 +==== Code ====
 +The source code of MonoRec has been released on GitHub under the flexible MIT License: https://github.com/Brummi/MonoRec.
  
 ==== Publications ==== ==== Publications ====

Rechte Seite

Informatik IX
Computer Vision Group

Boltzmannstrasse 3
85748 Garching info@vision.in.tum.de

Follow us on:

News

04.03.2024

We have twelve papers accepted to CVPR 2024. Check our publication page for more details.

18.07.2023

We have four papers accepted to ICCV 2023. Check out our publication page for more details.

02.03.2023

CVPR 2023

We have six papers accepted to CVPR 2023. Check out our publication page for more details.

15.10.2022

NeurIPS 2022

We have two papers accepted to NeurIPS 2022. Check out our publication page for more details.

15.10.2022

WACV 2023

We have two papers accepted at WACV 2023. Check out our publication page for more details.

More