Direkt zum Inhalt springen
Computer Vision Group
TUM School of Computation, Information and Technology
Technical University of Munich

Technical University of Munich



Learning Correspondence Uncertainty via Differentiable Nonlinear Least Squares


TWe propose a differentiable nonlinear least squares framework to account for uncertainty in relative pose estimation from feature correspondences. Specifically, we introduce a symmetric version of the probabilistic normal epipolar constraint, and an approach to estimate the covariance of feature positions by differentiating through the camera pose estimation procedure. We evaluate our approach on synthetic, as well as the KITTI and EuRoC real-world datasets. On the synthetic dataset, we confirm that our learned covariances accurately approximate the true noise distribution. In real world experiments, we find that our approach consistently outperforms state-of-the-art non-probabilistic and probabilistic approaches, regardless of the feature extraction algorithm of choice.

Rechte Seite

Informatik IX
Computer Vision Group

Boltzmannstrasse 3
85748 Garching info@vision.in.tum.de

Follow us on:



CVPR 2023

We have six papers accepted to CVPR 2023.


NeurIPS 2022

We have two papers accepted to NeurIPS 2022.


WACV 2023

We have two papers accepted at WACV 2023.


Fulbright PULSE podcast on Prof. Cremers went online on Apple Podcasts and Spotify.


MCML Kick-Off

On July 27th, we are organizing the Kick-Off of the Munich Center for Machine Learning in the Bavarian Academy of Sciences.