Direkt zum Inhalt springen
Computer Vision Group
TUM School of Computation, Information and Technology
Technical University of Munich

Technical University of Munich



Distributed Photometric Bundle Adjustment


In this paper we demonstrate that global photometric bundle adjustment (PBA) over all past keyframes can significantly improve the global accuracy of a monocular SLAM map compared to geometric techniques such as pose-graph optimization or traditional (geometric) bundle adjustment. However, PBA is computationally expensive in runtime, and memory usage can be prohibitively high. In order to address this scalability issue, we formulate PBA as an approximate consensus program. Due to its decomposable structure, the problem can be solved with block coordinate descent in parallel across multiple independent workers, each having lower requirements on memory and computational resources. For improved accuracy and convergence, we propose a novel gauge aware consensus update. Our experiments on real-world data show an average error reduction of 62% compared to odometry and 33% compared to intermediate pose-graph optimization, and that compared to the central optimization on a single machine, our distributed PBA achieves competitive pose-accuracy and cost.

Open-Source Code

Coming soon: The source code is still being prepared and documented and will be released shortly. Feel free to watch the repository to get a notification when it becomes available: https://github.com/tum-vision/dbatk


Export as PDF, XML, TEX or BIB

Conference and Workshop Papers
[]Distributed Photometric Bundle Adjustment (N Demmel, M Gao, E Laude, T Wu and D Cremers), In International Conference on 3D Vision (3DV), 2020. ([project page][code]) [bibtex] [pdf]Oral Presentation
Powered by bibtexbrowser
Export as PDF, XML, TEX or BIB

Rechte Seite

Informatik IX
Computer Vision Group

Boltzmannstrasse 3
85748 Garching info@vision.in.tum.de

Follow us on:



CVPR 2023

We have six papers accepted to CVPR 2023.


NeurIPS 2022

We have two papers accepted to NeurIPS 2022.


WACV 2023

We have two papers accepted at WACV 2023.


Fulbright PULSE podcast on Prof. Cremers went online on Apple Podcasts and Spotify.


MCML Kick-Off

On July 27th, we are organizing the Kick-Off of the Munich Center for Machine Learning in the Bavarian Academy of Sciences.