Direkt zum Inhalt springen
Computer Vision Group
TUM School of Computation, Information and Technology
Technical University of Munich

Technical University of Munich

Menu

Links

Informatik IX
Computer Vision Group

Boltzmannstrasse 3
85748 Garching info@vision.in.tum.de

Follow us on:

YouTube X / Twitter Facebook

News

26.02.2025

We have twelve papers accepted to CVPR 2025. Check our publication page for more details.

24.10.2024

LSD SLAM received the ECCV 2024 Koenderink Award for standing the Test of Time.

03.07.2024

We have seven papers accepted to ECCV 2024. Check our publication page for more details.

09.06.2024
GCPR / VMV 2024

GCPR / VMV 2024

We are organizing GCPR / VMV 2024 this fall.

04.03.2024

We have twelve papers accepted to CVPR 2024. Check our publication page for more details.

More


Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
teaching:ws2024:dl4science [2024/11/03 12:39]
Karnik Ram
teaching:ws2024:dl4science [2025/02/06 22:59] (current)
Karnik Ram
Line 55: Line 55:
     <td><a href="https://www.nature.com/articles/s41586-021-03819-2">Highly accurate protein structure prediction with AlphaFold 2</a></td>     <td><a href="https://www.nature.com/articles/s41586-021-03819-2">Highly accurate protein structure prediction with AlphaFold 2</a></td>
     <td>Zeyu</td>     <td>Zeyu</td>
 +    <td><a href="https://cvg.cit.tum.de/_media/teaching/ws2024/dl4science/zeyu.pdf">Slides</a></td>
   </tr>   </tr>
   <tr>   <tr>
     <td><a href="https://arxiv.org/abs/2402.04845">AlphaFold Meets Flow Matching for Generating Protein Ensembles</a></td>     <td><a href="https://arxiv.org/abs/2402.04845">AlphaFold Meets Flow Matching for Generating Protein Ensembles</a></td>
     <td>Sascha</td>     <td>Sascha</td>
 +    <td><a href="https://cvg.cit.tum.de/_media/teaching/ws2024/dl4science/sascha.pdf">Slides</a></td>
   </tr>   </tr>
   <tr>   <tr>
     <td rowspan="2">Nov 12</td>     <td rowspan="2">Nov 12</td>
     <td><a href="https://arxiv.org/abs/2312.15796">GenCast: Diffusion-based ensemble forecasting for medium-range weather</a></td>     <td><a href="https://arxiv.org/abs/2312.15796">GenCast: Diffusion-based ensemble forecasting for medium-range weather</a></td>
-    <td>Leonhard</td>+    <td>Leonhard<br> <b>Voted best presentation</b></td> 
 +        <td><a href="https://cvg.cit.tum.de/_media/teaching/ws2024/dl4science/leonhard.pdf">Slides</a></td>
   </tr>   </tr>
   <tr>   <tr>
     <td><a href="https://arxiv.org/abs/2405.13063">Aurora: A Foundation Model of the Atmosphere</a></td>     <td><a href="https://arxiv.org/abs/2405.13063">Aurora: A Foundation Model of the Atmosphere</a></td>
     <td>Frederic</td>     <td>Frederic</td>
 +        <td><a href="https://cvg.cit.tum.de/_media/teaching/ws2024/dl4science/frederic.pdf">Slides</a></td>
   </tr>   </tr>
   <tr>   <tr>
Line 73: Line 77:
     <td><a href="https://openaccess.thecvf.com/content/CVPR2024/html/Stevens_BioCLIP_A_Vision_Foundation_Model_for_the_Tree_of_Life_CVPR_2024_paper.html">BioCLIP: A Vision Foundation Model for the Tree of Life</a></td>     <td><a href="https://openaccess.thecvf.com/content/CVPR2024/html/Stevens_BioCLIP_A_Vision_Foundation_Model_for_the_Tree_of_Life_CVPR_2024_paper.html">BioCLIP: A Vision Foundation Model for the Tree of Life</a></td>
     <td>Qianlong</td>     <td>Qianlong</td>
 +        <td><a href="https://cvg.cit.tum.de/_media/teaching/ws2024/dl4science/xiao.pdf">Slides</a></td>
   </tr>   </tr>
   <tr>   <tr>
     <td><a href="https://openreview.net/forum?id=vN9fpfqoP1">Fine-Tuned Language Models Generate Stable Inorganic Materials as Text</a></td>     <td><a href="https://openreview.net/forum?id=vN9fpfqoP1">Fine-Tuned Language Models Generate Stable Inorganic Materials as Text</a></td>
     <td>Ahmet</td>     <td>Ahmet</td>
 +        <td><a href="https://cvg.cit.tum.de/_media/teaching/ws2024/dl4science/ahmet.pdf">Slides</a></td>
   </tr>   </tr>
   <tr>   <tr>
Line 82: Line 88:
     <td><a href="https://www.nature.com/articles/s41586-023-06735-9">Scaling deep learning for materials discovery</a></td>     <td><a href="https://www.nature.com/articles/s41586-023-06735-9">Scaling deep learning for materials discovery</a></td>
     <td>Jannis</td>     <td>Jannis</td>
 +        <td><a href="https://cvg.cit.tum.de/_media/teaching/ws2024/dl4science/jannis.pdf">Slides</a></td>
   </tr>   </tr>
   <tr>   <tr>
     <td><a href="https://arxiv.org/abs/2408.10205">KAN 2.0: Kolmogorov-Arnold Networks Meet Science</a></td>     <td><a href="https://arxiv.org/abs/2408.10205">KAN 2.0: Kolmogorov-Arnold Networks Meet Science</a></td>
     <td>Jonathan</td>     <td>Jonathan</td>
 +        <td><a href="https://cvg.cit.tum.de/_media/teaching/ws2024/dl4science/jonathan.pdf">Slides</a></td>
   </tr>   </tr>
 </table> </table>
Line 92: Line 100:
 == List of potential papers == == List of potential papers ==
  
-^No. ^Paper ^ + 
-| 1 | [[https://openreview.net/forum?id=B73niNjbPs|Continuous PDE Dynamics Forecasting with Implicit Neural Representations]]| +[[https://cvg.cit.tum.de/teaching/ws2024/dl4science/papers Available here]]
-| 2 | [[https://arxiv.org/abs/2108.08481|Neural Operator: Learning Maps Between Function Spaces +
-]]| +
-| 3 | [[https://arxiv.org/abs/2401.11037|Equivariant Graph Neural Operator for Modeling 3D Dynamics +
-]]+
-| 4 | [[https://www.nature.com/articles/s41467-022-29939-5|E(3)-equivariant graph neural networks for data-efficient and accurate interatomic potentials]]| +
-| 5 | [[https://www.nature.com/articles/s41467-023-36329-y|Learning Local Equivariant Representations for Large-Scale Atomistic Dynamics +
-]] | +
-| 6 | [[https://arxiv.org/abs/2210.06662|Action Matching: Learning Stochastic Dynamics from Samples +
-]] | +
-| 7 | [[https://openreview.net/forum?id=xuY33XhEGR|ClimODE: Climate and Weather Forecasting with Physics-informed Neural ODEs]]| +
-| 8 | [[https://arxiv.org/abs/2312.15796|GenCast: Diffusion-based ensemble forecasting for medium-range weather +
-]] | +
-| 9 | [[https://arxiv.org/abs/2405.13063|Aurora: A Foundation Model of the Atmosphere +
-]]| +
-| 10 | [[https://openreview.net/forum?id=vN9fpfqoP1|Fine-Tuned Language Models Generate Stable Inorganic Materials as Text]]| +
-| 11 | [[https://openreview.net/forum?id=W4pB7VbzZI|FlowMM: Generating Materials with Riemannian Flow Matching]]| +
-| 12 | [[https://openreview.net/forum?id=5Z3GURcqwT|Spherical Channels for Modeling Atomic Interactions]]| +
-| 13 | [[https://arxiv.org/abs/2312.03687|MatterGen: a generative model for inorganic materials design]]| +
-| 14| [[https://arxiv.org/abs/2405.04967|MatterSim: A Deep Learning Atomistic Model Across Elements, Temperatures and Pressures]] | +
-| 15 | [[https://www.nature.com/articles/s41586-023-06735-9|Scaling deep learning for materials discovery +
-]] | +
-| 16 | [[https://www.nature.com/articles/s41586-021-03819-2|Highly accurate protein structure prediction with AlphaFold 2]] | +
-| 17 | [[https://www.nature.com/articles/s41586-024-07487-w|Accurate structure prediction of biomolecular interactions with AlphaFold 3]] | +
-| 18 | [[https://openreview.net/forum?id=kKF8_K-mBbS|DiffDock: Diffusion Steps, Twists, and Turns for Molecular Docking]]| +
-| 19 | [[https://openreview.net/forum?id=yQcebEgQfH|AlphaFold Meets Flow Matching for Generating Protein Ensembles +
-]]| +
-| 20 | [[https://arxiv.org/abs/2106.12594|Real-time gravitational-wave science with neural posterior estimation]]| +
-| 21 | [[https://arxiv.org/abs/2404.09636|All-in-one simulation-based inference]] | +
-| 22 | [[https://arxiv.org/abs/2306.11925|LVM-Med: Learning Large-Scale Self-Supervised Vision Models for Medical Imaging via Second-order Graph Matching]]| +
-| 23 | [[https://openaccess.thecvf.com/content/CVPR2024/html/Stevens_BioCLIP_A_Vision_Foundation_Model_for_the_Tree_of_Life_CVPR_2024_paper.html|BioCLIP: A Vision Foundation Model for the Tree of Life]]| +
-| 24 | [[https://arxiv.org/abs/2408.10205|KAN 2.0: Kolmogorov-Arnold Networks Meet Science +
-]] | +
-| 25 | [[https://arxiv.org/abs/2006.11287|Discovering Symbolic Models from Deep Learning with Inductive Biases +
-]] | +
-| 26 | [[https://openreview.net/forum?id=vJx6fld6l0|Locality-Sensitive Hashing-Based Efficient Point Transformer with Applications in High-Energy Physics]] |+
  
 == Additional Resources == == Additional Resources ==
Line 137: Line 110:
   * [[https://arxiv.org/abs/2312.07511|A Hitchhiker's Guide to Geometric GNNs for 3D Atomic Systems   * [[https://arxiv.org/abs/2312.07511|A Hitchhiker's Guide to Geometric GNNs for 3D Atomic Systems
 ]] ]]
-  * [[https://cvg.cit.tum.de/teaching/ss2024/dl4science| Previous offering of seminar]]+  * [[https://cvg.cit.tum.de/teaching/ss2024/dl4science| Deep learning for the natural sciences SS2024]]

Rechte Seite

Informatik IX
Computer Vision Group

Boltzmannstrasse 3
85748 Garching info@vision.in.tum.de

Follow us on:

YouTube X / Twitter Facebook

News

26.02.2025

We have twelve papers accepted to CVPR 2025. Check our publication page for more details.

24.10.2024

LSD SLAM received the ECCV 2024 Koenderink Award for standing the Test of Time.

03.07.2024

We have seven papers accepted to ECCV 2024. Check our publication page for more details.

09.06.2024
GCPR / VMV 2024

GCPR / VMV 2024

We are organizing GCPR / VMV 2024 this fall.

04.03.2024

We have twelve papers accepted to CVPR 2024. Check our publication page for more details.

More