Direkt zum Inhalt springen
Computer Vision Group
TUM School of Computation, Information and Technology
Technical University of Munich

Technical University of Munich

Menu

Links

Informatik IX
Computer Vision Group

Boltzmannstrasse 3
85748 Garching info@vision.in.tum.de

Follow us on:

YouTube X / Twitter Facebook

News

26.02.2025

We have twelve papers accepted to CVPR 2025. Check our publication page for more details.

24.10.2024

LSD SLAM received the ECCV 2024 Koenderink Award for standing the Test of Time.

03.07.2024

We have seven papers accepted to ECCV 2024. Check our publication page for more details.

09.06.2024
GCPR / VMV 2024

GCPR / VMV 2024

We are organizing GCPR / VMV 2024 this fall.

04.03.2024

We have twelve papers accepted to CVPR 2024. Check our publication page for more details.

More


Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
teaching:ws2025:dl-equi-dynam [2025/09/26 14:06]
Karnik Ram
teaching:ws2025:dl-equi-dynam [2025/09/26 14:09] (current)
Karnik Ram
Line 125: Line 125:
 == List of potential papers == == List of potential papers ==
  
-^No. ^Paper ^ +[[https://cvg.cit.tum.de/teaching/ws2025/dl-equi-dynam/papers Available here]]
-| 1 | [[https://arxiv.org/abs/1807.02547 |3D Steerable CNNs: Learning Rotationally Equivariant Features in Volumetric Data]]| +
-| 2 | [[https://www.nature.com/articles/s41467-022-29939-5 | E(3)-equivariant graph neural networks for data-efficient and accurate interatomic potentials +
- ]]| +
-| 3 | [[https://arxiv.org/abs/2206.07697| MACE: Higher Order Equivariant Message Passing Neural Networks for Fast and Accurate Force Fields +
-]] | +
-| 4 | [[https://arxiv.org/abs/1802.08219| Tensor field networks: Rotationand translation-equivariant neural networks for 3D point clouds]] | +
-| 5 | [[https://arxiv.org/abs/2506.13523|The Price of Freedom: Exploring Expressivity and Runtime Tradeoffs in +
-Equivariant Tensor Products]] +
-| 6 | [[https://arxiv.org/abs/2302.03655|Reducing SO(3) Convolutions to SO(2) for Efficient Equivariant GNNs]]| +
-| 7 | [[https://arxiv.org/abs/2305.18415 | Geometric Algebra Transformers]] | +
-| 8 | [[https://arxiv.org/abs/2310.01647 | Equivariant Adaptation of Large Pretrained Models +
-]] | +
-| 9 | [[https://arxiv.org/abs/2110.03336 | Frame Averaging for Invariant and Equivariant Network Design]] |  +
-| 10 | [[https://arxiv.org/abs/2405.19296 | Neural Isometries: Taming Transformations for Equivariant ML +
-]] | +
-| 11 | [[https://arxiv.org/abs/2507.14793 | Flow Equivariant Recurrent Neural Networks +
-]] | +
-|12 | [[https://arxiv.org/abs/2501.01999|Probing Equivariance and Symmetry Breaking in Convolutional Networks +
-]]| +
-| 13 |[[https://arxiv.org/abs/2506.18340|Controlled Generation with Equivariant Variational Flow Matching +
-]]| +
-| 14 | [[https://arxiv.org/abs/1806.07366| Neural Ordinary Differential Equations]]| +
-| 15 | [[https://arxiv.org/abs/2410.13821|Artificial Kuramoto Oscillatory Neurons]]| +
-| 16 | [[https://arxiv.org/abs/2310.02391|SE(3)-Stochastic Flow Matching for Protein Backbone Generation]]| +
-| 17 | [[https://arxiv.org/abs/2506.17139|Consistent Sampling and Simulation: Molecular +
-Dynamics with Energy-Based Diffusion Models]] | +
-| 18| [[https://arxiv.org/abs/2405.03987 | Navigating Chemical Space with Latent Flows +
-]]| +
-| 19 | [[https://arxiv.org/abs/2210.06662|Action Matching: Learning Stochastic Dynamics from Samples +
-]] | +
-| 20 | [[https://arxiv.org/abs/2504.18506|Action-Minimization Meets Generative Modeling: Efficient Transition Path Sampling with the Onsager-Machlup Functional +
-]] | +
-| 21 | [[https://arxiv.org/abs/2410.07974|Doob's Lagrangian: A Sample-Efficient Variational Approach to Transition Path Sampling +
-]] | +
-| 22 | [[https://arxiv.org/abs/2504.11516|FEAT: Free energy Estimators with Adaptive Transport +
-]] | +
-| 23 | [[https://arxiv.org/abs/2209.14855|Continuous PDE Dynamics Forecasting with Implicit Neural Representations]] | +
-| 24 | [[https://arxiv.org/abs/2406.06660|Space-Time Continuous PDE Forecasting using +
-Equivariant Neural Fields]] | +
-| 25 | [[https://arxiv.org/abs/2507.11531|Langevin Flows for Modeling Neural Latent Dynamics]] |+
  
 == Previous seminars == == Previous seminars ==

Rechte Seite

Informatik IX
Computer Vision Group

Boltzmannstrasse 3
85748 Garching info@vision.in.tum.de

Follow us on:

YouTube X / Twitter Facebook

News

26.02.2025

We have twelve papers accepted to CVPR 2025. Check our publication page for more details.

24.10.2024

LSD SLAM received the ECCV 2024 Koenderink Award for standing the Test of Time.

03.07.2024

We have seven papers accepted to ECCV 2024. Check our publication page for more details.

09.06.2024
GCPR / VMV 2024

GCPR / VMV 2024

We are organizing GCPR / VMV 2024 this fall.

04.03.2024

We have twelve papers accepted to CVPR 2024. Check our publication page for more details.

More