Deep Learning for 2D and 3D Rotatable Data: An Overview of Methods (bibtex)
by L. Della Libera, V. Golkov, Y. Zhu, A. Mielke and D. Cremers
Reference:
Deep Learning for 2D and 3D Rotatable Data: An Overview of Methods (L. Della Libera, V. Golkov, Y. Zhu, A. Mielke and D. Cremers), In arXiv preprint arXiv:1910.14594, 2019.
Bibtex Entry:
@article{Della-Libera-et-al-2019, author = {L. Della Libera and V. Golkov and Y. Zhu and A. Mielke and D. Cremers}, title = {Deep Learning for {2D and 3D} Rotatable Data: An Overview of Methods}, year = {2019}, journal = {arXiv preprint arXiv:1910.14594}, eprint = {1910.14594}, eprinttype = {arXiv}, keywords = {deep learning, neural networks, 2D, 3D, rotations, invariance, equivariance}, }
Powered by bibtexbrowser
Back to