Direkt zum Inhalt springen
Computer Vision Group
TUM School of Computation, Information and Technology
Technical University of Munich

Technical University of Munich



Practical Course: GPU Programming in Computer Vision (6h / 10 ECTS)

WS 2014/2015, TU München

Please direct ALL questions regarding this course at cuda-ws1415@vision.in.tum.de.

Tutors: Thomas Möllenhoff, Robert Maier, Mohamed Souiai, Alfonso Ros Dos Santos, Caner Hazirbas

Date and Location

Start: March 2

The course will take place in our lab 02.05.014. Timeline is March 2–April 3, with the following schedule:

  • 1 week with lectures and exercises (attendance mandatory): March 2–9
  • 3 weeks project phase: March 10–29
  • final presentation: between March 30–April 3

For more details see Course Layout below.

Course Registration

Registration starts on 19.01.15 at 10am.

Students should register this praktikum via TUMOnline.

There is no waiting list from previous years. First-come, first-served (FCFS) !

Requirements: Knowledge of C or C++, basic mathematics

Number of participants: up to 24

Course Description

The goal of this course is to provide an introduction to the NVIDIA CUDA framework for massively parallel programming on GPUs. During the implementation of basic computer vision algorithms students will gradually learn more how to harness the power of GPU computing. Although we assume good knowledge of C or C++ and basic mathematics, no further prior knowledge about CUDA, or computer vision topics will be required.

During the course lecture students will learn how to program GPUs with CUDA. Afterwards the students will start to implement more sophisticated computer vision algorithms within a student project. The course finishes with a presentation and a live demo of the project results.


  • Introduction to Parallel Computing
  • Introduction to CUDA
  • Implementation of basic computer vision algorithms with CUDA (e.g. convolution, diffusion)
  • Student project: Implementation of an advanced computer vision application which uses CUDA acceleration for real-time processing of webcam images.


  • Lecture (March 2–9): 2–3h lectures each day (attendance mandatory) from 10:00, followed by corresponding programming exercises until 18:00. The exercises must be done in groups of 2–3 students. The groups must be formed on the first day (but you can decide on your team already beforehand, of course). You may leave early once you have finished the present day's exercises.
  • Project (March 10–29): Implementation of a student project in groups of 2–3 (same groups as in the lecture week). You are free to work from home if you like and all team members agree, but keep in mind that you will require CUDA-capable hardware, and should collaborate within your team. You should also prepare your final presentation during this time.
  • Presentation and demo (March 30–April 3): Each group will be assigned a time slot on one of the days, to present their results and give a live demo, followed by a Q&A session.



Additional material can be downloaded from here.

Rechte Seite

Informatik IX
Computer Vision Group

Boltzmannstrasse 3
85748 Garching info@vision.in.tum.de

Follow us on:



CVPR 2023

We have six papers accepted to CVPR 2023.


NeurIPS 2022

We have two papers accepted to NeurIPS 2022.


WACV 2023

We have two papers accepted at WACV 2023.


Fulbright PULSE podcast on Prof. Cremers went online on Apple Podcasts and Spotify.


MCML Kick-Off

On July 27th, we are organizing the Kick-Off of the Munich Center for Machine Learning in the Bavarian Academy of Sciences.