Direkt zum Inhalt springen
Computer Vision Group
TUM School of Computation, Information and Technology
Technical University of Munich

Technical University of Munich

Menu

Links

Informatik IX
Computer Vision Group

Boltzmannstrasse 3
85748 Garching info@vision.in.tum.de

Follow us on:

YouTube X / Twitter Facebook

News

24.10.2024

LSD SLAM received the ECCV 2024 Koenderink Award for standing the Test of Time.

03.07.2024

We have seven papers accepted to ECCV 2024. Check our publication page for more details.

09.06.2024
GCPR / VMV 2024

GCPR / VMV 2024

We are organizing GCPR / VMV 2024 this fall.

04.03.2024

We have twelve papers accepted to CVPR 2024. Check our publication page for more details.

18.07.2023

We have four papers accepted to ICCV 2023. Check out our publication page for more details.

More


GN-Net: The Gauss-Newton Loss for Multi-Weather Relocalization

ICRA Presentation Video

Abstract

Direct SLAM methods have shown exceptional performance on odometry tasks. However, they are susceptible to dynamic lighting and weather changes while also suffering from a bad initialization on large baselines. To overcome this, we propose GN-Net: a network optimized with the novel Gauss-Newton loss for training weather invariant deep features, tailored for direct image alignment. Our network can be trained with pixel correspondences between images even from different sequences. Experiments on both simulated and real-world datasets demonstrate that our approach is more robust against bad initialization, variations in day-time, and weather changes thereby outperforming state-of-the-art direct and indirect methods. Furthermore, we release an evaluation benchmark for relocalization tracking against different types of weather.

Downloads

The paper can be downloaded at: https://arxiv.org/abs/1904.11932
The video is available at: https://youtu.be/gcbKeKX2eiE
The supplementary can be downloaded at: gn-net-supplementary.pdf
The relocalization tracking benchmark dataset can be downloaded at: gnnet_benchmark_v1.4.zip
Code related to our benchmark can be found at: https://github.com/Artisense-ai/GN-Net-Benchmark


Export as PDF, XML, TEX or BIB

Journal Articles
2020
[]GN-Net: The Gauss-Newton Loss for Multi-Weather Relocalization (L. von Stumberg, P. Wenzel, Q. Khan and D. Cremers), In IEEE Robotics and Automation Letters (RA-L), volume 5, 2020. ([arXiv][video][project page][supplementary]) [bibtex]
Powered by bibtexbrowser
Export as PDF, XML, TEX or BIB

Rechte Seite

Informatik IX
Computer Vision Group

Boltzmannstrasse 3
85748 Garching info@vision.in.tum.de

Follow us on:

YouTube X / Twitter Facebook

News

24.10.2024

LSD SLAM received the ECCV 2024 Koenderink Award for standing the Test of Time.

03.07.2024

We have seven papers accepted to ECCV 2024. Check our publication page for more details.

09.06.2024
GCPR / VMV 2024

GCPR / VMV 2024

We are organizing GCPR / VMV 2024 this fall.

04.03.2024

We have twelve papers accepted to CVPR 2024. Check our publication page for more details.

18.07.2023

We have four papers accepted to ICCV 2023. Check out our publication page for more details.

More